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Abstract

Stresses can cause anisotropic and inhomogeneous distribution of the refractive index. Their effects on the perfor-

mance of optical waveguides have been observed in photoelectric devices. In this paper, the photo-elastic relation and

wave equations for inhomogeneous and anisotropic waveguides are reviewed. The effective refractive indexes and mode

shapes of planar waveguides under different stress states are obtained analytically. It is found that stress can affect the

optical performance; different stress states play different roles: high stress value can change the cutoff thickness, which

may induce multimode; in-plane stress causes birefringence, which may induce polarization shift and polarization

dependent loss; stress concentration can change the mode shape, which may induced large transition loss; and pure

shear stress has little effects on the effective refractive index.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Optical waveguides are basic components in many optical systems, such as arrayed waveguide gratings

(AWGs), lasers and tunable filters. The function of waveguide is to direct the light to the desired location.

In modern optical systems, more and more components are integrated (or hybrid-packaged) in a single

chip, where optical waveguides serve as interconnects for photonic components. Due to fabrication and

packaging, stresses cannot be avoided in these complicated structures with many diverse materials. These

stresses can change the refractive indexes of the waveguide by the acousto-optic (elasto-optic or photo-

elastic) effect (Xu and Stroud, 1992; Sapriel, 1979), which may affect the optical performance. Fig. 1 shows
the finite element simulation results of the stress distribution in a ridge Si waveguide core. This core is

covered by silica cladding layer and Al interconnect layer, which are not shown in this figure. These layers

are fabricated at high temperatures (e.g., 300 �C for Al interconnect and 1000 �C for silica cladding), and
cooled down to room temperature. The stresses shown in Fig. 1 are due to the thermal mismatch of different

layers. Because of the sharp corners and the shape of the waveguide, the stresses are inhomogeneous and
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anisotropic. Fig. 2 shows the refractive index change caused by these stresses due to the photo-elastic effect.

We can see that the stresses cause the inhomogeneous and anisotropic distribution of refractive indexes.

Stress birefringence has long been observed (Born and Wolf, 1964). Many efforts have been made to

improve the optical performance by taking advantage of photo-elastic effect, such as stress release grooves to

Fig. 1. Finite element results of the stress distributions in a ridge silicon waveguide core: (a) rxx; (b) ryy ; (c) rzz. The stresses are induced

by thermal mismatch of the top cladding layers. The unit of the stresses is MPa.

Fig. 2. Refractive index distributions caused by the stresses in Fig. 1: (a) nxx; (b) nyy ; (c) nzz.
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minimize the polarization shift (Nadler et al., 1999), thermal stress to control the temperature sensitivity of

central wavelength (Cohen et al., 1996, 2000; Ooba et al., 2000; Huang and Yan, 2002), stress-induced optical

waveguides and filters (Saitoh et al., 1999; Lea andWeiss, 1996; Almashary andKim, 1996; Rho and Jackson,

1999; Savin et al., 2000), stress effects on laser (Maciejko et al., 1989, 1993), and stress-induced birefringence
behavior of the waveguides and fibers (Kilian et al., 2000; Okuno et al., 1994; Chowdhury andWilcox, 2000;

Buda et al., 2000). However, stresses could also cause problems, such as the increments of polarization de-

pendent loss (PDL) and polarization shift (PS) (Min et al., 2000; Yan et al., 2002). Although many obser-

vations have been made on the stress effects on the optical performance, systematical studies are rarely found.

In this paper, I illustrate the stress effects on the optical performance by using planar waveguides. The

plan of this paper is as follows. Section 2 reviews the photo-elastic relation and wave equations of an-

isotropic and inhomogeneous waveguides. In Section 3, the effect index and mode shape for a planar

waveguide are solved analytically under four stress states: hydrostatic, in-plane, stress concentration, and
pure shear. Several practical concerns and the implications of stress effects are discussed in Section 4.

2. Wave equations of anisotropic and inhomogeneous waveguides

Considering fields in a region which contains no sources, the Maxwell�s equations are

r� eEE ¼ �l
o eHH
ot

; ð1Þ

r � eHH ¼ e
oeEE
ot

; ð2Þ

where r is the del operator, eEE is the electric field, eHH is the magnetic field, l is the permeability and e is the
permittivity of the medium and t is time.
Considering a simple-harmonic time varying field, which can be expressed in the exponential form

eEEðx; y; z; tÞ ¼ Eðx; y; zÞ expðjxtÞ; ð3Þ

eHH ðx; y; z; tÞ ¼ Hðx; y; zÞ expðjxtÞ; ð4Þ

where x is the optical frequency and j ¼
ffiffiffiffiffiffiffi
�1

p
, the Maxwell�s equations are transferred to

r� E ¼ �jxlH ; ð5Þ

r � H ¼ jxeE: ð6Þ

The dielectric tensor takes the form of

e ¼
n2xx n2xy n2xz
n2xy n2yy n2yz
n2xz n2yz n2zz

0B@
1CA; ð7Þ

where nxx, nyy , nzz, nxy , nxz and nyz are the refractive indexes, which are functions of x, y and z. Due to the
photo-elastic effect, the refractive indexes change with stress/strain. For media with cubic structure, the

relation between the refractive index, n, and strain, c, is expressed as (Xu and Stroud, 1992; Sapriel, 1979)
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D

1=n2xx
1=n2yy
1=n2zz
1=n2yz
1=n2xz
1=n2xy

0BBBBBBBBB@

1CCCCCCCCCA
¼

p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

0BBBBBBBB@

1CCCCCCCCA

cxx
cyy
czz
cyz
cxz
cxy

0BBBBBBBB@

1CCCCCCCCA
; ð8Þ

where p11, p12 and p44 are strain-optic constants. By using the stress–strain relation, the relation between the
index and the stress is found to be

nxx
nyy
nzz
nyz
nxz
nxy

0BBBBBBBB@

1CCCCCCCCA
¼

n0
n0
n0
0

0

0

0BBBBBBBB@

1CCCCCCCCA
�

C1 C2 C2 0 0 0

C2 C1 C2 0 0 0

C2 C2 C1 0 0 0

0 0 0 C3 0 0

0 0 0 0 C3 0

0 0 0 0 0 C3

0BBBBBBBB@

1CCCCCCCCA

rxx

ryy

rzz

ryz

rxz

rxy

0BBBBBBBB@

1CCCCCCCCA
; ð9Þ

where C1 ¼ n30ðp11 � 2mp12Þ=ð2EÞ, C2 ¼ n30½p12 � mðp11 þ p12Þ
=ð2EÞ and C3 ¼ n30p44=ð2GÞ are stress-optic
constants. E, G and m are Young�s modulus, shear modulus and Poisson�s ratio, respectively. For isotropic
crystals, p44 ¼ ðp11 � p12Þ=2 and G ¼ E=2=ð1þ mÞ. In Eq. (9), it is assumed that the refractive index of media
is homogeneous and is in the system of principal dielectric axes at stress free state. Table 1 lists the photo-

elastic constants of some materials. Stress-optic constants, C, are calculated from strain-optic constants, p,
listed in the book by Xu and Stroud (1992).

The stresses in microstructures are usually on the order of 108 Pa, and the C values in Table 1 are on the
order of 10�11 Pa�1; so the refractive index change caused by stress is normally between �0.01. Because the
stresses are usually non-uniformly distributed (inhomogeneous) and have different values in different di-

rections (anisotropic) in the waveguides, the refractive indexes are also inhomogeneous and anisotropic as

shown in Figs. 1 and 2. As the waveguide is usually very long in one direction, denoted as z, the shear
stresses in this direction can be ignored. Therefore, the dielectric tensor becomes

Table 1

The photo-elastic constants of some materials

Material k0 (lm) n0 p11 p12 p44 C1 (10�12/Pa) C2 (10�12/Pa) C3 (10�12/Pa)

Ge 2.0–2.2 4 )0.063 )0.0535 )0.074 )10.56 )6.78 )35.29
10.6 0.27 0.235 0.125 44.27 30.37 59.61

Si 1.15 3.42 )0.101 0.0094 )11.35 3.65

3.39 )0.094 0.017 )0.051 )11.04 4.04 )12.82
GaAs 1.15 3.43 )0.165 )0.140 )0.072 )18.39 )10.63 )24.46
Fused

silica

0.633 1.46 0.121 0.270 0.65 4.50 )3.85

GaP 0.633 3.32 )0.151 )0.082 )0.074 )17.91 )1.87 )19.21
LiNbO3 0.633 2.29 )0.026 0.090 0.146 )2.10 2.55 )14.63
LiTaO3 0.633 2.18 )0.084 0.081 0.028 )2.57 1.91 1.53

Al2O3 0.633 1.76 )0.23 )0.03 )0.10 )1.61 0.202 )1.90
PbMoO4 0.633 2.39 0.24 0.24 0.067 6.63 6.63 17.04
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e ¼
n2xx n2xy 0

n2xy n2yy 0

0 0 n2zz

0@ 1A: ð10Þ

In order to solve Eqs. (5) and (6), we only need to consider two special cases: (1) Hz ¼ 0 and (2) Ez ¼ 0.
Any field distribution can be expressed as a combination of the field distributions of the different modes

obtained in the two special cases. For the first case, the magnetic field is transverse to the direction of

propagation; such modes are known as transverse magnetic (or TM) modes. For the second case, the

electric field is transverse to the direction of propagation; such modes are known as transverse electric (or

TE) modes.
Applying the following transformation:

Eðx; y; zÞ ¼ eðx; y; zÞ expð�jnekzÞ;
Hðx; y; zÞ ¼ hðx; y; zÞ expð�jnhkzÞ;

ð11Þ

gives the wave equations in terms of TE fields for anisotropic and inhomogeneous waveguides (Xu et al.,

1994)

Pxx Pxy
Pyx Pyy

	 

ex
ey

	 

¼ j2nek

o

oz
ex
ey

	 

; ð12Þ

where k ¼ 2p=k, ne is the effective refractive index of TE mode, and

Pxxex ¼
o

ox
1

n2zz

o

ox
ðn2xxexÞ

� �
þ o2ey

oy2
þ k2ðn2xx � n2eÞex;

Pyyey ¼
o

oy
1

n2zz

o

oy
ðn2yyeyÞ

� �
þ o2ey

ox2
þ k2ðn2yy � n2eÞey ;

Pxyey ¼ n2xyk
2ey þ

o

ox
1

n2zz

o

oy
ðn2yyeyÞ

� �
� o2ey
oxoy

;

Pyxex ¼ n2xyk
2ex þ

o

oy
1

n2zz

o

ox
ðn2xxexÞ

� �
� o2ex
oyox

:

ð13Þ

Similarly, we can derive the wave equations in terms of TM fields for anisotropic and inhomogeneous

waveguides as

Qxx Qxy

Qyx Qyy

	 

hx
hy

	 

¼ j2nhk

o

oz
hx
hy

	 

; ð14Þ

where nh is the effective refractive index of TM mode, and

Qxxhx ¼
o2hx
ox2

þ n2yy
o

oy
1

n2zz

ohx
oy


 �
þ k2ðn2yy � n2eÞhx;

Qyyhy ¼
o2hy
oy2

þ n2xx
o

ox
1

n2zz

ohy
ox


 �
þ k2ðn2xx � n2eÞhy ;

Qxyhy ¼ n2xyk
2hy þ

o2hy
oyox

� n2yy
o

oy
1

n2zz

ohy
ox


 �
;

Qyxhx ¼ n2xyk
2hx þ

o2hx
oxoy

� n2xx
o

ox
1

n2zz

ohx
oy


 �
:

ð15Þ
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To obtain the TE and TM modes, the field is considered to be independent of z direction. The mode
equations are

Pxx Pxy
Pyx Pyy

	 

ex
ey

	 

¼ 0; ð16Þ

Qxx Qxy

Qyx Qyy

	 

hx
hy

	 

¼ 0: ð17Þ

These are eigenvalue equations. By using the boundary conditions, we can obtain the eigenvalues, ne and
nh, and eigenvectors, e and h. This eigenvalue problem can only be solved numerically for most practical
waveguide structures. In order to illustrate the stress effects, in the next section, we will study a simple

structure, a planar waveguide, and analytically solve this problem.

3. A planar waveguide

A planar waveguide consists of an infinitely large planar core with the thickness on the order of the

wavelength and a higher refractive index than the surrounding cladding regions. Fig. 3 shows the schematic

of a symmetric three-layer planar optic waveguide. For the planar waveguides, the light propagates in the

z direction, is confined in the x direction within the central core region, and has no variation in the y
direction. Although most practical optical waveguides are channel waveguides, where the light is also

confined in the y direction, planar waveguides are used to provide a basic understanding since analytical
solutions may be obtained for this kind of structure.

In the planar waveguides, the fields are independent of the y coordinate. By using Eq. (6) and Ez ¼ 0, the
TE mode equations (16) can be simplified to

TE :
d2ey
dx2

þ k2 n2yy

 
� n2e �

n4xy
n2xx � n2e

!
ey ¼ 0: ð18Þ

Similarly, by using Eq. (5) and Hz ¼ 0, the TM mode equations (17) can be simplified to

TM :
d2hy
dx2

þ p
dhy
dx

þ k2
n2zz
n2xx

n2xx

 
� n2h �

n4xy
n2yy � n2e

!
hy ¼ 0; ð19Þ

where

pðxÞ ¼ �2
nzz

dnzz
dx

:

Solving the above equations, we can obtain the TE and TM modes. To focus on the stress effects, in the

follow discussions, we will study a simple structure: a symmetric three-layer planar optical waveguide with

n1

n1

t n0 (>n1)

cladding

cladding

core 0

x

y

z

Fig. 3. Schematic of a symmetric three-layer planer waveguide.
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infinitely thick cladding regions (Fig. 3), and apply four kinds of stress states: hydrostatic, in-plane, stress

concentration, and pure shear. To simplify the problem and emphasize the stress effects on the core, we

ignore the photo-elastic effects of the cladding region. The refractive index of the cladding region, n1, is
assumed to be a constant when applying loads. In this paper, we take n0 ¼ 3:5, n1 ¼ 3:4, k ¼ 0:83 lm and
C2=C1 ¼ 0:1 in all the analyses. For other planar waveguides with more complicated structure subjected to
more complicated stresses, similar method can be used.

3.1. Hydrostatic stress state

In order to study the stress magnitude effect, the core is assumed to be under hydrostatic stress state, i.e.,

rxx ¼ ryy ¼ rzz ¼ r and rxy ¼ 0. Therefore, the index of the core is isotropic and homogeneous, and the
value of the refractive index in the core changes due to the stress, i.e., nxx ¼ nyy ¼ nzz ¼ n ¼ n0�
ðC1 þ 2C2Þr. The mode equations of the core are simplified to

TE:
d2ey
dx2

þ k2ðn2 � n2eÞey ¼ 0; ð20Þ

TM:
d2hy
dx2

þ k2ðn2 � n2hÞhy ¼ 0: ð21Þ

By using the boundary condition of zero fields at infinite large x, the above equations can be solved, and
the solutions are listed in Table 2.

At the interface between core and cladding, the boundary conditions are (Boyd, 1994):

TE: ey and hz �
dey
dx
continuous across the boundary.

TM: hy and ez �
1

n2


 �
dhy
dx
continuous across the boundary

These are eigenvalue problems. A, B, C and D are constants. Applying the above boundary conditions
results in four homogeneous linear equations involving the four constants for each mode. For these linear

equations to have nontrivial solutions for the constants, the determinant of the coefficients must equal zero.

From this relation, the effective indexes, ne and nh, can be determined. Fig. 4 shows the TM effective re-

fractive index, nh, as a function of core thickness. Fig. 5 shows the effective indexes as a function of nor-
malized stress for a 1 lm core thickness waveguide. The TM effective index is very close to the TE effective

index under this stress state. However, the effective indexes vary with stress, and the cutoff thickness, which
is defined as the core thickness at which the field is no longer guided by the core (ne ¼ nh ¼ n1 in this case),
shifts when the stress value is high. In Fig. 5, when t ¼ 1 lm, the second mode (m ¼ 2) appears or dis-
appears when stress changes. This means that stress can cause multimode. The field distributions of the

fundamental modes (m ¼ 0) are shown in Fig. 6. The modal field is normalized by the time-averaged power
flow, P , which is given by the integral over the waveguide cross-section of the z-component of the Poynting
vector, 1

2
ReðE � H 
Þz (Adams, 1981):

Table 2

Solutions for TE and TM modes under hydrostatic stress state

Region TE solutions TM solutions

xP t=2 AE exp �kx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

p� �
AM exp �kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21

p� �
t=2 > jxj BE cos

�
kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � n2e

p �
þ CE sin

�
kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � n2e

p �
BM cos

�
kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � n2h

p �
þ CM sin

�
kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � n2h

p �
�t=2P x DE exp

�
kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

p �
DM exp

�
kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21

p �
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P ¼ 1
2

Z 1

�1
ReðE � H 
Þz dx: ð22Þ

The mode shape changes little under the hydrostatic stress.

3.2. In-plane stress state

To study the stress anisotropy effect, the core is considered under in-plan stress state, i.e., rxx ¼ 0, rxy ¼ 0
and ryy ¼ rzz ¼ r. From Eq. (9), the refractive index in the core is

3.4
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3.5
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iv

e 
in
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x,

 n
h

m=0

m=1
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C1σ = - 0.01
C1σ =0.01

µ

Fig. 4. TM effective refractive index, nh, as a function of core thickness for a symmetric planar optical waveguide under different
hydrostatic stresses.
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Fig. 5. Effective refractive index as a function of normalized hydrostatic stress for a symmetric planar optical waveguide with t ¼ 1 lm.

1622 M. Huang / International Journal of Solids and Structures 40 (2003) 1615–1632



nxx
nyy
nzz

0@ 1A ¼
n0 � 2C2r

n0 � ðC1 þ C2Þr
n0 � ðC1 þ C2Þr

0@ 1A: ð23Þ

The mode equations of the core are simplified to

TE:
d2ey
dx2

þ k2ðn2yy � n2eÞey ¼ 0; ð24Þ

TM:
d2hy
dx2

þ k2ðn2zz � n2zzn
2
h=n

2
xxÞhy ¼ 0: ð25Þ

By using the boundary condition that at infinitely large x, the material carries no fields, the above
equations can be solved, and the solutions are listed in Table 3.

At the interface between core and cladding, the boundary conditions are:

TE: ey and
dey
dx
continuous across the boundary

TM: hy and
1

n2zz


 �
dhy
dx
continuous across the boundary

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2

(a)

corecladding cladding

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2

(b)

corecladding cladding

Fig. 6. Normalized transverse field distribution of the fundamental mode (m ¼ 0) for a symmetric optical waveguide under different
hydrostatic stresses with t ¼ 1 lm: (a) TM mode; (b) TE mode. The curves from top are corresponding to C1r ¼ �0:01, C1r ¼ 0 and
C1r ¼ 0:01 stress values.

Table 3

Solutions for TE and TM modes under in-plane stress state

Region TE solutions TM solutions

xP t=2 AE exp �kx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

p� �
AM exp �kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2zzn

2
h=n2xx � n21

p� �
t=2 > jxj BE cos kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2yy � n2e

q� �
þ CE sin kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2yy � n2e

q� �
BM cos kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2zz � n2zzn

2
h=n2xx

p� �
þ CM sin kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2zz � n2zzn

2
h=n2xx

p� �
�t=2P x DE exp kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

p� �
DM exp kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2zzn

2
h=n2xx � n21

p� �
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Solving these eigenvalue problems, we can obtain the effective refractive index and normalized mode

shape. Fig. 7 shows the effective index as a function of core thickness. Fig. 8 shows the effective indexes as a

function of normalized stress. The normalized field distributions of the fundamental mode (m ¼ 0) are
shown in Fig. 9. The plots of in-plane stress state are similar to those of hydrostatic stress state, except that
the refractive indexes of TM mode are quite different from those of TE mode due to stress anisotropy. The

in-plane stress can cause birefringence, which will be discussed later.

3.3. Stress concentration

To study the inhomogeneous stress effect, we consider a concentrated stress distribution. Stress is as-

sumed to be isotropic and concentrated between �d and þd at the center of the core, and refractive indexes
do not change with stresses in other regions. Assuming the stress field in the core as
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Fig. 7. Effective refractive index as a function of core thickness for a symmetric planar optical waveguide under different in-plane

stresses: (a) TE mode; (b) TM mode.
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Fig. 8. Effective refractive index as a function of normalized in-plane stress for a symmetric planar optical waveguide with t ¼ 1 lm.
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rxx ¼ ryy ¼ rzz ¼ r ¼
0; t=2 > jxjP d=2;

n0
ðC1 þ 2C2Þ

1� 1� ðC1 þ 2C2Þrm
n0

� �1�2jxj=d( )
; d=2 > jxj;

8><>: ð26Þ

the corresponding refractive indexes in the core under this stress state are

nxx ¼ nyy ¼ nzz ¼ n ¼
n0; t=2 > jxjP d=2;

n0 1�
ðC1 þ 2C2Þrm

n0

� �1�2jxj=d
; d=2 > jxj;

8<: ð27Þ

where rm is the maximum stress at the middle of the core, which is a constant. By using this index profile
(27), the mode equations in the stress concentration area are

TE:
d2ey
dx2

þ k2ðn2 � n2eÞey ¼ 0; ð28Þ

TM:
d2hy
dx2

þ signðxÞpm
dhy
dx

þ k2ðn2 � n2hÞhy ¼ 0; ð29Þ

where pm ¼ 4 ln½1� rmðC1 þ 2C2Þ=n0
=d. Denoting / ¼ ey , c ¼ ne for TE; and / ¼ hy=n, c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h þ p2m=ð4k2Þ

p
for TM, the mode equations for TE (28) and TM (29) can be combined together as

(Owyang, 1981; Sodha and Ghatak, 1977)

d2/
dx2

þ k2ðn2 � c2Þ/ ¼ 0: ð30Þ

Eq. (30) can be further transformed to

n2
d2/

dn2
þ n

d/
dn

þ ðn2 � a2Þ/ ¼ 0; ð31Þ

where n ¼ 2kn=pm and a ¼ 2kc=pm. This is a Bessel�s equation. The solution is a linear combination of JaðnÞ
and YaðnÞ, where Ja and Ya are the Bessel functions of the first kind and second kind, respectively. The

solutions of the mode equations are listed in Table 4.
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Fig. 9. Normalized transverse field distribution of the fundamental mode (m ¼ 0) for a symmetric optical waveguide under different in-
plane stresses with t ¼ 1 lm: (a) TM mode; (b) TE mode. The curves from top are corresponding to C1r ¼ �0:01, C1r ¼ 0 and
C1r ¼ 0:01 stress values.
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Applying interface boundary conditions similar as the hydrostatic stress state, and solving these ei-
genvalue equations, we can obtain the effective refractive index and normalized mode shape. Fig. 10 shows

the TM effective refractive index, nh, as a function of waveguide thickness. Fig. 11 shows the effective in-
dexes as a function of normalized stress. The normalized field distributions of the fundamental mode

(m ¼ 0) are shown in Fig. 12. In these figures, we take d=t ¼ 0:05, and rmC1 is considered between �0.1 as
the maximum stress in the stress concentration area is very high. It is important to note that the mode shape

changes a lot when stresses concentrate. The reason is that stress concentration causes the non-uniform

distribution of the refractive index, and the light trends to propagate in the higher refractive index region.

From Figs. 10 and 11, we can see that stresses have much less effect on the first mode (m ¼ 1) than on other
modes in this case. Because the waveguide considered here is symmetric, the field of the first mode is zero at

the center of the core, where the stress concentration happens.

Table 4

Solutions for TE and TM modes under stress concentration state

Region TE solutions TM solutions

xP t=2 AE exp �k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

p
x

� �
AM exp �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21

p
x

� �
t=2 > xP d=2 BE cos k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2e

p
x

� �
þ CE sin k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2e

p
x

� �
BM cos k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2h

p
x

� �
þ CM sin k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2h

p
x

� �
d=2 > jxj DEJaE 2kn=pmð Þ þ EEYaE 2kn=pmð Þ n½DMJaM 2kn=pmð Þ þ EMYaM 2kn=pmð Þ

�d=2 > xP � t=2 FE cos k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2e

p
x

� �
þ GE sin k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2e

p
x

� �
FM cos k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2h

p
x

� �
þ GM sin k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2h

p
x

� �
�t=2P x HE exp k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e � n21

p
x

� �
HM exp k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h � n21

p
x

� �
Where aE ¼ 2kne=pm and aM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2n2h=p2m þ 1

p
.
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Fig. 10. TM effective refractive index, nh, as a function of core thickness for a symmetric planar optical waveguide under different
concentrated stresses.
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3.4. Pure shear stress state

To study the shear stress effect, the core is assumed to be under pure shear stress state, i.e., rxx ¼
ryy ¼ rzz ¼ 0 and rxy ¼ s. Therefore, the index of the core is isotropic and homogeneous, and the value of
the index, nxy , changes due to the shear stress, i.e., nxy ¼ �C3s. The mode equations of the core are

TE:
d2ey
dx2

þ k2½n20 � n2e � n4xy=ðn20 � n2eÞ
ey ¼ 0; ð32Þ
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Fig. 11. Effective refractive index as a function of normalized concentrated stress for a symmetric planar optical waveguide with t ¼
1 lm.
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Fig. 12. Normalized transverse field distribution of the fundamental mode (m ¼ 0) for a symmetric optical waveguide under different
concentrated stresses with t ¼ 1 lm: (a) TM mode; (b) TE mode. The curves from top are corresponding to C1rm ¼ �0:1, C1rm ¼ 0
and C1rm ¼ 0:1 stress values.
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TM:
d2hy
dx2

þ k2½n20 � n2h � n4xy=ðn20 � n2hÞ
hy ¼ 0: ð33Þ

Using the similar method and boundary conditions as the hydrostatic stress state, we solved the ei-

genvalue problems and obtained the effective refractive index (Fig. 13). Pure shear stress has very little effect

on the optical performance.

4. Several practical issues

4.1. Mode numbers and cutoff behavior

The stresses can shift the cutoff thickness under many stress states as shown in Figs. 4, 7 and 10. At

certain core thickness, some mode may appear or disappear when stress value changes (Figs. 5, 8, and 11).

The number of modes allowed in a three-layer symmetric planar waveguide is (Boyd, 1994)

M ffi 2t
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � n21

q
: ð34Þ

Stress can change the refractive index, which may change the number of modes in the waveguide. High

stress value may cause multimode. Note that the cutoff behavior only exits for m 6¼ 0 modes in these plots.
This is due to the symmetry of the waveguide. For the asymmetrical case, a finite mode cutoff exists even for

the m ¼ 0 mode (Boyd, 1994).

4.2. Loss

When the light propagates from the unstressed area to stressed area, the refractive index and mode shape

change. If the index contrast between the core and cladding regions decreases, the field confinement be-

comes weak. That could cause power loss (Adams, 1981; Boyd, 1994), a phenomenon referred to as ra-

diation confinement loss. The radiation confinement loss can be obtained by calculating the ratio of power
in the core to total power. Fig. 14 compares the radiation confinement loss caused by different stress states
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Fig. 13. Effective refractive index as a function of normalized pure shear stress for a symmetric planar optical waveguide with t ¼ 1 lm.
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when C1r
 ¼ 0:01, where r
 ¼ r for hydrostatic and in-plane stress states; r
 ¼ rm=10 for stress concen-
tration state; and r
 ¼ s for pure shear state. Stress concentration causes higher confinement loss than other
stress states, and the difference between TE and TM mode confinement loss is higher for in-plane stress

state than for other stress states.
As the mode shape changes, the power loss may also be induced when the light transits between the

unstressed and stressed areas. Transition loss can be estimated by comparing the unstressed mode shape

and stressed mode shape. Fig. 15 shows the transition loss of different stress states when C1r
 ¼ 0:01.
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Fig. 14. Stress caused radiation confinement loss of different stress states for a symmetric planar optical waveguide with t ¼ 1 lm when
C1r
 ¼ 0:01, where r
 ¼ r for hydrostatic and in-plane stress states; r
 ¼ rm=10 for stress concentration state; and r
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Fig. 15. Stress caused transition loss of different stress states for a symmetric planar optical waveguide with t ¼ 1 lm when C1r
 ¼ 0:01,
where r
 ¼ r for hydrostatic and in-plane stress states; r
 ¼ rm=10 for stress concentration state; and r
 ¼ s for pure shear state.
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Because the concentrated stress significantly changes the mode shape, the transition loss caused by stress

concentration is much higher than those caused by other stress states. The difference between the TE and

TM mode transition loss is higher for in-plane stress state than for other stress states.

4.3. Birefringence: polarization shift (PS) and polarization dependent loss (PDL)

When an isotropic material is subjected to mechanical stress, it may become optically anisotropic. This

phenomenon is known as birefringence (Born and Wolf, 1964). PS is used to describe the wavelength

difference between the TE and TM mode, which is calculated as

PS ¼ kTE � kTM: ð35Þ

PS values of different stress states are shown in Fig. 16. PS values of the in-plane stress state is one order

magnitude higher than those of other stress states. Stress anisotropy can dramatically increase the PS. On

the other hand, PS can be controlled by applying anisotropic stresses.

In practice, the stresses are usually anisotropic and inhomogeneous as shown in Fig. 1. One of the stress

components may concentrate at some area. This can cause either TM or TE mode shape to change. The

transition loss of one mode becomes quit different from the other, which can induce large PDL. PDL is

defined as the difference of the optical propagation losses between the TE and TM modes of a waveguide.

From Figs. 14 and 15, we can see that stress anisotropy and non-uniformity can cause large PDL, which has
been observed by Min et al. (2000) and Yan et al. (2002).

5. Concluding remarks

Modern photoelectric devices comprise many components with small feature size, complicated geometric

shape and diverse materials. During processing, packaging and service, stresses are induced by many
sources, such as temperature cycling (Huang et al., 2000, 2001, 2002), electron migration (Ma et al., 1995),
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Fig. 16. Polarization shift of different stress states for a symmetric planar optical waveguide with t ¼ 1 lm. In the plot, r
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hydrostatic and in-plane stress states; r
 ¼ rm=10 for stress concentration state; and r
 ¼ s for pure shear state.
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oxidation (Suo, 1995), etc. The stresses can cause the refractive index change on the order of 0.01. As shown

in this paper, this small index change, aided by non-uniformity and anisotropy, causes unacceptable optical

performance degradation and different stress states play different roles: high stress value may induce

multimode; in-plane stresses may induce PS and PDL; stress concentration may induce large transition loss;
and pure shear stress has little effects on the effective refractive index. Different waveguide structures are in

different stress states. For buried waveguides, which have rectangular core shape and embedded in other

cladding materials, and straight optical fibers, their stress states are similar to the hydrostatic stress state,

where stresses will not cause too much loss and birefringence, but may induce multimode. For ridge

waveguides and bent optical fibers, their stress states are much more complicated. Stress-induced refractive

index non-uniformity and anisotropy may exist simultaneously, so many problems may be induced by

stresses. Therefore, stress effects on the optical performance should be considered in the device design stage.

Although this study is performed on the planar waveguides under four simple stress states, the qualitative
picture obtained in this paper should be generic to other waveguide structures and under more complicated

stress states.
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